Oscillatory Survival Probability and Eigenvalues of the Non-Self-Adjoint Fokker-Planck Operator

نویسندگان

  • David Holcman
  • Zeev Schuss
چکیده

We demonstrate the oscillatory decay of the survival probability of the stochastic dynamics dxε = a(xε) dt+ √ 2ε b(xε) dw, which is activated by small noise over the boundary of the domain of attraction D of a stable focus of the drift a(x). The boundary ∂D of the domain is an unstable limit cycle of a(x). The oscillations are explained by a singular perturbation expansion of the spectrum of the Dirichlet problem for the non-self-adjoint Fokker–Planck operator inD Lεu(x) = ε ∑2 i,j=1 ∂[σ(x)u(x)] ∂xi∂xj −∑2i=1 ∂[a (x)u(x)] ∂xi = −λεu(x), with σ(x) = b(x)bT (x). We calculate the leading-order asymptotic expansion of all eigenvalues λε for small ε. The principal eigenvalue is known to decay exponentially fast as ε → 0. We find that for small ε the higher-order eigenvalues are given by λm,n = nω1+miω2+O(ε) for n = 1, 2, . . . , m = ±1, . . . , where ω1 and ω2 are explicitly computed constants. We also find the asymptotic structure of the eigenfunctions of Lε and of its adjoint L∗ε . We illustrate the oscillatory decay with a model of synaptic depression of neuronal networks in neurobiology.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Generalization of Sturm-Liouville Theory for Fractional Bessel Operator

In this paper, we give the spectral theory for eigenvalues and eigenfunctions of a boundary value problem consisting of the linear fractional Bessel operator. Moreover, we show that this operator is self-adjoint, the eigenvalues of the problem are real, and the corresponding eigenfunctions are orthogonal. In this paper, we give the spectral theory for eigenvalues and eigenfunctions...

متن کامل

Oscillatory decay of the survival probability of activated diffusion across a limit cycle.

Activated escape of a Brownian particle from the domain of attraction of a stable focus over a limit cycle exhibits non-Kramers behavior: it is non-Poissonian. When the attractor is moved closer to the boundary, oscillations can be discerned in the survival probability. We show that these oscillations are due to complex-valued higher-order eigenvalues of the Fokker-Planck operator, which we com...

متن کامل

Some results on non-self-adjoint operators, a survey

This text is a survey of recent results obtained by the author and collaborators on different problems for non-self-adjoint operators. The topics are: Kramers-Fokker-Planck type operators, spectral asymptotics in two dimensions and Weyl asymptotics for the eigenvalues of non-self-adjoint operators with small random perturbations. In the introduction we also review the notion of pseudo-spectrum ...

متن کامل

Inverse problem for Sturm-Liouville operators with a transmission and parameter dependent boundary conditions

In this manuscript, we consider the inverse problem for non self-adjoint Sturm--Liouville operator $-D^2+q$ with eigenparameter dependent boundary and discontinuity conditions inside a finite closed interval. We prove by defining a new Hilbert space and using spectral data of a kind, the potential function can be uniquely determined by a set of value of eigenfunctions at an interior point and p...

متن کامل

Inverse Sturm-Liouville problems with a Spectral Parameter in the Boundary and transmission conditions

In this manuscript, we study the inverse problem for non self-adjoint Sturm--Liouville operator $-D^2+q$ with eigenparameter dependent boundary and discontinuity conditions inside a finite closed interval. By defining  a new Hilbert space and  using its spectral data of a kind, it is shown that the potential function can be uniquely determined by part of a set of values of eigenfunctions at som...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Multiscale Modeling & Simulation

دوره 12  شماره 

صفحات  -

تاریخ انتشار 2014